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Abstract 

The stationary perturbation series is derived from the time-dependent perturbation 
series up to any order by using a formula derived from the theory of divergent series. 
The probability density of the perturbed state turns out as the evolution of the density 
operator of the pure unperturbed initial state as h -+ 0. This result, for h -+ 0, indicates 
that the particle moves in the classical trajectory with the Hamiltonian H = Ho + V 
immediately after V is turned on, if it is in the trajectory of H0 initially. This confirms 
the classical dynamics. Further, the adiabatic theorem is introduced in order to get the 
same conclusion for arbitrary finite potential V. 

1. Introduction 

Earlier in this volume (p. 1), we concluded that  the @funct ion in 
quan tum mechanics (de Broglie, 1960, 1964) with the probabil i ty inter- 
pretat ion does have a particle behaviour  (trajectory picture) as h ~ 0. 
A theorem was obtained 

lira exp H(p,  q) - E(n) ~_~ ih t -- ~ I ~  (')) @~(')1 (1.1) 
r 

where H(p,q)  is the Hamil tonian o f  the system and ~(r) its eigenstate with 
possible degeneracy r corresponding to the eigenvalue e(n). Further,  it 
was claimed there that  the mathematics  o f  divergent series is necessary if  
a consistent theory o f  quan tum physics with classical physics is expected 
to exist. Especially, the correctness & t h e  following function was emphasised 

~(x, y)  = lim exp[i(x - y)  t] 

x r  

In this paper,  the per turbat ion problem is considered, using 

H =  H 0 + V (1.3) 

t This paper was developed from part of a report (Su, 1968) which was supported by 
National Science Council, Republic of China. 
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If (1.1) is considered as an evolution operator for H for an infinite time 
interval, then the time-dependent perturbation series goes to the stationary 
Rayleigh-Schrfdinger (abbreviated as RS hereafter) perturbation series 
by using (1.2). Similar treatments, but with different bases, have been 
done by Gell-Mann & Low (1951), Sch~Snberg (1951) and Bates (1961). 
Since the time interval goes infinitely long, the adiabatic theorem (abbrevi- 
ated as AT hereafter) should be obeyed (Born & Fock, 1928; Kato, 1950; 
Messiah, 1961). We claim in Section 2 that in the classical limit h ~ 0 
the system, having an initial unperturbed state, goes to the perturbed 
state (i.e. it obeys the Hamiltonian H) immediately after V is turned on. 
This conclusion verifies the classical dynamics as a limit of quantum 
mechanics if the Hamiltonian &the system is changing by a small amount V. 

In Section 3 we express the AT in a form related to (1.1). Then we verify 
that the above conclusion is also correct for a classical dynamical system 
in a change of rio to H = H0 + Vfor an arbitrary Vas a limit of the quantum 
mechanical results with probability interpretation and h -+ 0. 

2. Transient Approach to the Perturbation Theory in Quantum 
Mechanics and in Its Classical Limit 

In this section, (1.1) is used as an evolution operator and the perturbed 
state is obtained when (1.1) operates on the unperturbed initial state. 
Using the probability interpretation, we conclude that in quantum mech- 
anics we need an infinite time interval to arrive at the eigenstate of H 
from an eigenstate of H0 as the adiabatic theorem requires, but in its 
classical limit, the classical trajectory according to H is arrived atpromptly 
after V is turned on, just as given in the classical dynamics. 

Denoting ~b i the eigenstate of H0 

Ho , = E, 4,, 

and assuming that it is a non-degenerate case, (1.1) implies the perturbed 
state 

L. H -  A ,  ~,(~,[~bi) = / n m  exp ~ ~, qJi (2.1) 
\ t-~ ill ] 

where, on the right-hand side, ~b~ may be considered as an initial state at 
t = 0. As proved in Appendix A below, by using the well-known time- 
dependent perturbation formula 

t 

U(t, to) = P exp (ih) -1 J dt' V'(t') (2.2) 
to 

where V' ( t ) -  exp(-Hot/ih)Vexp(Hot/ih) and P is the time-ordered pro- 
duct. We obtain, 4, = ~ ,  the stationary RS perturbed state up to any 
orders as may be calculated from (2.2), and (~b~l~b~) may be put as unity, 
as usual. Further, in Appendix B (both Appendix A and Appendix B 
contain material first presented in Su, 1968), the eigenvalue e(n)= ~(i) 
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in (2.1) for ~, = ~ is exactly the perturbed energy in RS perturbation 
theory. Consequently, the quantum-mechanical proof above implies that 
the perturbed state can be obtained from the unperturbed state via an 
infinite time transiency after V is turned on. This confirms the adiabatic 
theorem requirement (Born & Fock, 1928; Kato, 1950; Messiah, 1961). 

Now consider the evolution 

exp H(p 'q)  - e(i)tl~b,(t = 0)> <~b~(t = 0)1 exp H ( p ' q I 2  e(i) t (2.3) 
ih 

As expressed in {exp(iW/h)]q>}-representation (Su, 1971) with W(q,t) 
in the 'energy representation' (not in {q}-representation as it was above), 
it becomes 

~L m (expH[p + (OW/Oq'),q']- e(i) t) e xp i (W(q , t ) -  W(q', t)) 
ih h x 

t # o  

• <q', t = 014h> <~,Iq, t = 0> exp H[p + (aW/aq),q] - e(i) t 
- ih  

OW , OW , 
' -  0-7- = Ei)~= o x 

x ~ ( q ' - q ) 3 ( H ( ~ , q ) , e ( i ) )  

= exp ~t<q' l (~> Gb, lq> exp ~(i) t 
- ih  (2.4) 

from (2.1), we express a classical trajectory of a particle at q ' = q  moving 
according to the Hamilton-Jacobi equation 

O W  i 

and with the initial conditions at t = 0 for q' = q0 = q and for the W function 

/0 W(qo, t = 
H0~ ~q 0),q0) = E~ (2.6) 

This situation is exactly what is expected in the classical dynamics, i.e. 
once V is turned on, almost immediately the particle moves according to 
the equation of motion (2.5), instead of H0 = Ev 

Comparing (2.1) and (2.3), we have solved the perturbation problem 
both in quantum mechanics and its classical correspondence. In the former 
case, t -+ ~ is needed and in the latter, as h --~ 0 and t equals any value 
not equal to zero. Furthermore, the energy values are also noted as, f iom 
(2.5) and (2.6), 

e(i) = Et + V(qo) 
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if V = V(q) for simplicity. The classical initial condition in this classical 
correspondence does have the peculiar features that if both r and El 
are quantum mechanical values, special or restricted values of  q0 or V(qo) 
are needed. 

3. Wave Function at t ~ oo 

As the time t -+ oo is required in Section 2, the adiabatic theorem should 
be brought in. For  the reason below, we consider the time-dependent 
Hamiltonian of the system 

H = H o  t < 0  

= H ( t )  0 < t < T, (3.1) 

= H t  TI < t <<. T2 

satisfying all the conditions on the Hamiltonian as required in AT. In 
(3.0,  Ho and/ /1  are time-independent. Let us denote 

H0 ~h, = Ei ~b~ 

Hi r = E(i)r 

then the AT gives the time-dependent wave function T~(t) with 

T,(0) = ~b,, lim T,( t)  = r exp e(.~) t (3.2) 
T2-+m t / t  

As we see from AT, (3.2) is valid for t ~ m. Using (1.1) and (3.2), we get 

E( i )  t H 1 " 
lim Wi(t) = Nexp-=-- .  (lim exp ~e( t )  t)~b~ (3.3) 

where the normalisation constant 

N =  

may be put as unity if we adopt the usual convention. Formally, (3.3) 
gives a function limW,(t) for t ~ ~ as a result of the following rules. For  
0 < t < o o  

H~ t . (3.4) T,( t)  = exp 7 h -  q~' 

as its evolution with the Hamiltonian HI (not H)!  But at t -+ oo a factor 

r t -e( i )  t 
1 = exp ~ -  exp 

should be inserted in order to keep a time-dependent factor exp[e(i)t/ih], 
thus t -+ oo only in one of the two. 

There may be such a real, physical situation corresponding to (3.4). If  
we can have the condition 

Hx 7"1 , 
U(T~, 0) ~b, = exp ~ qh (3.5) 
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for the Hamiltonian Hin  (3.1) on the left-hand side of (3.5), then the system 
after t = 7"1 is described by (3.4) and this formal description of (3.3) is 
physically meaningful. One special and exact example of (3.5) is for the 
case with the limit 7"1 ~ 0. AT implies 

U(T~, O) -+ 1 

and (3.5) is certainly valid. This example can be stated as follows. For the 
case in which H has a sudden 'adiabatic change' at t = 0 from H0 to/-/i, 
W~(t) should tend to a particular way, as given in (3.3). 

A particular case of this example is for the perturbation theory with the 
perturbed Hamiltonian //1 = H0 + V. If the change from H0 to HI at 
t = 0 is in an 'adiabatic change', then the perturbation theory in Section 2 
confirms the above theory. 

Similar to the classical correspondence in Section 2, for a well-behaved 
H such as given in (3.1) with T 1 ~ 0, (3.2) and (3.3) give 

r N (iim exp ~ ttr 

Considering the evolution processes with the probability interpretation 

exp ~ t[r 0)} @,(t = 0)[exp ~ t  

and using the {exp[iW(q,t)/h][q>}-representation (Su, 1971) we have 

- iW(q ' , t )  tlr 0)>• lira (q'[ exp exp = 
h--+O 
t # O  

[ H - e(i) .~ iW(q, t) 
• <~bi(t = O)I ~exp ~ t} exp-----ff~ ]q) 

[ - iW(q ' , t ) )  ~,(t)t[~b,(t=O)) • ~lim <q'l ~exp ~ exp H~ ' 
t > 0  

[ H1 -- ~(i) \ iW(q,t) 
x (~b,(t = 0)1 ~exp -7/~ t) e x p ~  lq> 

3(H~[0W ,~ OW , = ~-~qTq,,q ] , , ( i ) ) ' ( H o ( ~ q , , q ) ,  OW 
Ot = E~)~= o • 

, , ( i )  t - -e ( i )  t 
= (q [r exp ~ (r exp ~ IN[ z 
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Exactly the same conclusion as given in Section 2 can be obtained; namely 
the classical trajectory for H~ = Ho + V is followed immediately after 
V is turned on. Now here we have V arbitrary, not necessarily small. Thus 
the conclusion obtained in Section 2 is generally valid for all cases provided 
that the transition from Ho to H, is well behaved as given in (3.1) with 
T, -+0.  

Finally, l im(Tz-+ oo)Tti(t) depends on H,  and ~bi only. No explicit 
form of H ( t )  in (3.1) is needed. Quantum mechanically, if only the final 
state and the initial state is measurable, the adiabatic transient H ( t )  is 
immaterial. 

Appendix A 

Perturbed Wave Function 

Equations (2.1) and (2.2) give, in the SchrSdinger picture, 

r162 = lim (exp 

= lim (exp 

= lim exp 
t--~ oo 

e(n) - E, ~ H t  11o t . 
-/~ t ) exp 7h exp - y ~p, 

e(n) - E, ) 
-/g t U(0 , - t )  ~b, 

/ 
(A.1) 

lim(exp 
d 

where the operators 
0 0 

e ~ - (j!(ih)J) - '  f d q ' "  f d t jP(V ' ( t l )  . . . V'(tj)) (A.2) 
--t --t 

Let us calculate the matrix element of e ~ in the approximation that t is 
a large quantity with the rules 

(i) t -+ co except the terms t" 

(ii) t" is kept as a function of  t unchanged (A.3) 
(iii) if there is a multiple integral, t ---> oo properly in every 

integral 

Then the matrix elements o fe  ~ in the unperturbed state {~b~}-representation 

=- (A.4) 
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are calculated as 

(mr i) ( c ~ ? =  vm, 

C(I) -- V t l  
li - -  /~ 

[(2~ x--" V,.. V.~ Vm~ V. V~, 
Cmt _~_ n2~ i ( e i  __ ~ __ En ) ( g ~ . : . ~ m ) 2 . ~  - :(I) 

I o t~ 

.__._llf f , , Cu------(~I[~N dtl dt2V(q) V(t2)[$,) 
~. - t  - t  

= ~ V,. V., t 1 c9)2 
2! ,l E, - E. ~ + etc. 

(m r i) 

(A.5) 

in which (1.2) has been used frequently. It is noted that in comparing the 
result of (A.5) with the ordinary RS perturbation series, the perturbed 
state in the RS theory is 

~,'-- ~bm~C~)~(t = 0) (A.6) 
m ./ 

This formula expresses the perturbed state up to any orders of the per- 
turbation. It may be noted here that the matrix element ~u:(2) in (A.5) is 
defined for the usual perturbation theory condition 

(~,'1~,) = 1 (A.7) 

[or equivalently (~tl~b,)= 1, cf. (A.8) below]. If we want to maintain 
the unitarity of U(0,-t) = ~ c (J), we need to define 

~,,'(2)' =_ @, at1 at2P(V'(tl) V'(t2))l~b,) 
- - t  - - t  

= _ x /  v,.v., 
2(E, - E.) '  + 4 P  

The perturbed state ~ '  in (A.6) thus obtained satisfies the unitarity (Schiff, 
1955). 

Substituting the perturbed energy values from (B.1) below, we get for 
(A.1) with (A.5) 

~(~il~bi) = limexp e(i)-- El t ~  ~bm~ c~l ) 
t->CO /h m j 
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After substituting in (A.6), (A.7) and (B.1) 

~ i = l i m e x p  t 1 + - - ~ - + ~ \ - - - ~ ]  + . . . +  z - - ~ - + . . .  ~i' 

~-~ ~ i  t 

apart from a possible unimportant phase factor. Therefore the state ~ 
above is exactly the perturbed state in the RS theory. 

Appendix B 

Perturbed Energy 

With the rules (A.3), (A. 1) can be applied to get the energy eigenvalue 

,(i) = (~b,l(E c(S)) -1 H E c(S) l~,) 

= ~ E (~) 

where ~(i) is resolved into the powers of V% Define 

(E  (7(j))-i _ y e - l . ) .  

Using (~ c(S)) -1 (Z c(S)) = 1, we have 

C -1(0)  = 1 
C-1 ( I )  = __(7(1) 

c-1(2) = _c(2) + ( c ( ' )  2 

C--1(3) = __C(3) _~_ (7(1) C(2) .q_ ((7(2) - -  (C(1))2) (7(1) 

(7-I(4)  ~ __(7(4) _~_ (7(i) (7(3) .q_ C(3) C(1) - -  r  C(2) C(1) - -  

- c  (2) (c~ 2 + (c(1)) 4 + (c(2)) 2 - (c(1)) 2 c (2) etc. 

Thus we have 

where 

(~ c(S)) -1 H E c(s) = H + ~ E e(s) [H, c (~'-s)] 
~=1 j 

Hence 

c c-") = 0 (n > O) 

e (-n) = 0 

e (~ = 1 
e (I)  = _ e  (1) 

e(2) = _c(2) + (c"))  2 

e (3) = _ c  (3) .~ c (2) c (1) .._}_ c (1) c(2) _ (c (1 ) )  3 etc. 
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or  
E (~ = E~ 

E (1) = Vu (B.1) 

E(Z) = ~ V~. V,~ .r  ~ 2 2 ~ .  etc. 

which are exactly the values for the perturbed energy in the RS theory. 
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